堆的结构实现与应用-程序员宅基地

技术标签: 算法  数据结构与算法  开发语言  

目录

         前言:

1.认识堆

a.如何认识堆?

b.大根堆与小根堆

c.堆应用的简单认识

2.堆的结构与要实现的功能

3.向上调整算法

4.向下调整算法

5.向堆插入数据并建堆

6.堆的大小

7.堆的判空

8.取堆顶数据

9.删除堆顶数据

10.向上调整时间复杂度

11.向下调整时间复杂度

12.堆排序

a.直接将数组放到堆再取堆顶

b.在将数组放到堆的时候就直接调整,用数组建堆

13.topk问题

总结:


前言:

堆其实与二叉树息息相关,本篇将从如何实现堆,以及堆的应用等方面入手。

1.认识堆

a.如何认识堆?

我们只要记住关键的两点:1.堆必须是完全二叉树。2.堆要么是大堆,要么是小堆。

b.大根堆与小根堆

那什么是大堆,什么又是小堆呢?

大堆:树中任意一个父亲都大于或等于孩子。

小堆:树中任意一个父亲都小于或等于孩子。

c.堆应用的简单认识

堆排序:时间复杂度为O(N*logN),属于快一点的排序。

topk问题:N个数找最大的前K个。

优先级队列:C++中stl的priority_queue容器的底层实现需要用到建堆的思想。

2.堆的结构与要实现的功能

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	HPDataType size;
	HPDataType capacity;
}HP;

void InitHeap(HP* php);
void DestroyHeap(HP* php);
void PushHeap(HP* php, HPDataType x);
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
bool HeapEmpty(HP* php);
int HeapSize(HP* php);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(int* a, int n, int parent);
void Swap(HPDataType* p1, HPDataType* p2);

我们提供以下数据来建堆:

3.向上调整算法

我们现在如果要让提供的数据插入到这个堆里面,如何保证插入的时候就建好堆了呢?这时我们就要用到向上向下调整的算法了。假设我们现在要建一个小堆,就要保证每一个子节点都要小于或者等于它的父节点,用我们提供好的数据,当插入到32这个数据的时候就要进行调整了:

既然是向上调整,那我们就要找孩子的父亲,那如何找到父亲呢?通过下标的关系可以发现,不管是左还是右孩子,只要遵循(child-1)/2就能找到父亲的下标,然后就是交换嘛;交换过后我们要让孩子走到父亲位置,再找到新的父亲,一轮一轮的向上,这就是向上调整算法:

void AdjustUp(HPDataType* a, int child)
{
	//默认建小堆
	int parent = (child - 1) / 2;

	while (child > 0)//等于0就停止了,等于0说明孩子在根的位置,就没有父亲了
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);

			child = parent;//孩子走到父亲的位置继续再找新的父亲
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}

要注意的就是循环条件,如果孩子走到0说明走到根的位置了,就没有父亲了,循环停止。

4.向下调整算法

向下调整算法与向上调整算法相反,其实向下就是找孩子,如果建小堆就让左右孩子中最小的孩子与父亲交换(最小的孩子与父亲交换后,父亲就变成三者中最小的了,符合小堆的性质),再让父亲走到孩子的位置上,再往下继续找到新的孩子,直到孩子不存在的情况。

关键来了,如何找到左右孩子中的最小的那个呢?如何通过父亲找到孩子呢?

我们可以默认左孩子是最小的那一个,如果左孩子大于右孩子,那做孩子的下标+1不就到右孩子了吗?解决了第一个问题,那如何通过父亲找到孩子呢,既然我们默认左孩子是小的那一个,我们可以先找到左孩子,通过下标的关系,我们就知道左孩子child=parent*2+1,好了,这就是向下调整算法的思路,来看代码:

void AdjustDown(int* a, int n, int parent)
{
	//默认小堆
	int child = parent * 2 + 1;//默认是左孩子

	while (child < n)
	{
		//这里右孩子的存在条件必须放在&&的前面,因为如果放在后面,前面的条件为假,右孩子也为假,就判断不出来是哪个了(检查右孩子存在必须更严格)
		if (child + 1 < n && a[child] > a[child + 1])//如果右孩子存在(因为如果左孩子为n-1,那右孩子就为n了,就越界了)并且左孩子大于右孩子,下标就走到右孩子上
		{
			child = child + 1;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);

			parent = child;
			child = parent * 2 + 1;
		}

		else
		{
			break;
		}
	}

}

注意点:

1.我们既然默认左孩子为小的那一个,那结束条件就应该是左孩子不存在的情况即当左孩子等于n的时候就越界了,而又由于堆是完全二叉树,所以左孩子不存在,那右孩子一定不存在,所以只写这一个就行。

2.child + 1 < n && a[child] > a[child + 1],首先需要注意左孩子存在,但右孩子不存在的情况,所以判断child+1<n,其次这个条件要写到&&的前面,因为如果写到后面,a[child]>a[child+1]为假,就判断不出右孩子可能越界的情况了,所以右孩子的检查应该放到&&前面。

5.向堆插入数据并建堆

void PushHeap(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		int NewCapacity = php->capacity = 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * NewCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = NewCapacity;

	}
	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);//向上调整传孩子,即插入的数据,找父亲

}

需要注意的是最后向上调整传的孩子是插入的数据的下标,因为插入后size++了,所以-1才对应插入的数据的下标。

6.堆的大小

int HeapSize(HP* php)
{
	assert(php);
	return php->size;
}

7.堆的判空

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

8.取堆顶数据

HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(&php));

	return php->a[0];
}

9.删除堆顶数据

如果我们直接删除堆顶的数据会导致这个堆变乱,所以我们采用交换堆顶和堆尾的数据,将堆的大小减1,这样就访问不到堆尾的数据也就起到了删除的效果了,然后我们再从根节点开始做向下调整算法,恢复堆即可,注意空堆不能删,要判空:

void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(&php));
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);//从根节点开始向下调整

}

10.向上调整时间复杂度

按最坏的情况计算时间复杂度,就拿满二叉树来说:

我们先找到每一次的节点数,再乘向上调整的次数,假设树的高度为h,那我们就将1-h层的所有节点的调整次数相加,就是时间复杂度(计算采用等比数列求和的乘公比错位相减的方法):

又因为满二叉树的节点个数为2^h-1,所以我们设树有N个节点,就能得到高度,再代入F(h):

实际去除不影响结果的项也就是O(N*logN),N为节点个数。

11.向下调整时间复杂度

一样拿满二叉树来说:

实际计算结果:

实际去除不影响结果的项也就是O(N),N为节点个数。

12.堆排序

a.直接将数组放到堆再取堆顶

void HeapSort1(int* a, int n)
{
	HP hp;
	InitHeap(&hp);


	for (int i = 0; i < n; i++)
	{
		PushHeap(&hp, a[i]);
	}

	int i = 0;
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		a[i++] = top;
		HeapPop(&hp);
	}
}

这样的坏处就是想要改升序降序要改向上向下调整的逻辑,有些麻烦,而且时间上有些麻烦,需要堆排的时候还要写一个堆出来。

b.在将数组放到堆的时候就直接调整,用数组建堆

如果我们要排成降序,就建小堆,小堆选出最小的,首尾交换,最小的放到最后的位置,最后一个数据不看做堆里面的,再次向下调整就可以选出次小的,以此类推,相当于一个一个头插;

调用一次是O(logN),N次就是O(N*logN),计算方法跟向下调整差不多;

向下调整建堆需要倒着调整,叶子节点不需要处理,倒数第一个非叶子节点即最后一个节点的父亲开始调整:

void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

如果我们要排升序,只需要改动向下调整或者写两个建堆方法:

改动两处:选孩子时选大的那个;如果孩子大于父亲,交换:

建堆时也可向上调整建堆,具体实现博主暂时不清楚~~~:

for (int i = 1; i < n; i++)//下标为0即第一个数默认是堆
	{
		AdjustUp(a, i);//建堆,相当于一个一个插入成堆
	}

注意:

1.为什么升序不建小堆呢?因为小堆最小的已经在前面了,不管是移动还是怎么剩下的都要重新建堆

2.堆排序整体时间复杂度为N+N*logN,也就是O(N*logN)

13.topk问题

什么是topk问题?

就是N个数找最大的前N个:

面对庞大的数据,数据放在磁盘的文件里面,而内存是有限的,所以我们将这些数据的前k个建堆,将剩下的数据与堆顶元素进行比较,符合条件就交换,然后再调整,重复操作即可,那该怎么建堆呢?首先对前3 数据进行建一个小堆,注意这里不能建大堆,如果建大堆的话,可能最大的数据在前三个数,其余2个数据在余下的 N-K个数里面,这样其余2个就不能进堆了:

void CreateNData()
{
	//造数据
	int n = 10000;
	srand((unsigned int)time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}
	for (size_t i = 0; i < n; i++)
	{
		int x = rand() % 1000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}

void PrintTopK(int k)
{
	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");
	if (fout == NULL)
	{
		perror("fopen error");
		return;
	}
	int* kminheap = (int*)malloc(sizeof(int) * k);
	if (kminheap == NULL)
	{
		perror("malloc error");
		return;
	}
	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &kminheap[i]);
	}

	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(kminheap, k, i);
	}

	int val = 0;
	while (!feof(fout))//fscanf读到文件结尾,调用feof,feof读到文件末尾返回非0,否则返回0
	{
		fscanf(fout, "%d", &val);
		if (val > kminheap[0])
		{
			kminheap[0] = val;
			AdjustDown(kminheap, k, 0);
		}
	}

	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
	printf("\n");
}

总结:

堆的结构不难,难在和其他的场景联系到一起并涉及一些算法,所以还是掌握好它结构和算法的基础为主

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/2301_79698419/article/details/136179286

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法