ENC28J60 驱动开发要点_enc28j60 esp32驱动-程序员宅基地

摘要:在嵌入式系统中,以太网控制器通常也是研究热点之一,MicroChip公司的ENC28J60在嵌入式系统中应用价值较高,该芯片集成了MAC控制器和PHY,使用SPI接口,适合在引脚资源比较紧张的嵌入式系统中加入以太网连接功能,本文主要介绍了MicroChip公司的ENC28J60控制器的初始化及其编程相关的注意和要点,并针对开发中可能遇到的一些问题进行了探讨。
关键字: ENC28J60编程

ENC28J60初始化操作

ENC28J60初始化操作内容较多。
第一,进行CS端口的相关配置,即把该端口设置为输出状态,该部分代码可以出现在任何硬件初始化代码中,例如可以把所有的IO操作放入gpio_config中;

第二,进行软件复位,并通过查询ESTAT的ESTAT_CLKRDY标志位确定是否复位完成,初始化NextPacketPtr变量,该变量的初值为发送缓冲区的起始地址;

第三,配置发送和接收缓冲区的区间第四,若干参数配置,特别说明ENC28J60具有自动填充0 的功能,即发送报文长度低于以太网最小报文长度时可以填充0至最小长度;第五,写入MAC地址,由于ENC28J60内部没有全球唯一的MAC地址,所以该地址需要软件填写。但是这种软件填写方式存在缺陷,实际应用中可以含有全球唯一的MAC地址的EEPROM,从EERPOM读取MAC地址并用该地址初始化ENC28J60;第六,初始化中断,并使能接收,ENC28J60含有多个中断,本例只打开全局中断和数据包接收中断。

 

ENC28J60的驱动编写算是比较复杂的。但是回过头来看看,其他的以太网驱动芯片的操作和ENC28J60的操作类似,其操作的核心便是4KB的硬件缓冲区。本例不能给出合适的运行范例,因为以太网驱动芯片要配合以太网协议栈来实现,而以太网协议栈内容很多涉及非常多的基础知识。ENC28J60的驱动是以太网协议栈实现的基础,通过ENC28J60还将会分析uIP协议栈,lwIP协议栈的应用等。

 

1.以太网数据缓冲区(8K)读写/地址控制REG的相关作用:

注意,这些REG除EPKTCNT外都为16bits,以太网数据缓冲区地址为:0000h~1FFFh

1).ERDPT(分为H/L两个)MCU读缓冲器指针:

--手册P28,MCU读取缓冲区数据时,每次实际读取的地址由该REG保存.

2).EWRPT(分为H/L两个)MCU写缓冲器指针:

--手册P29,MCU向缓冲区写入数据时,每次实际写入的地址由该REG保存.

3).ERXRDPT(分为H/L两个)接收读指针:

--手册P17,P33, 定义禁止接收硬件写入的FIFO 中的位置。 在正常操作中,接收硬件(指网络接口方向)将数据顺序写入,直到ERXRDPT 所指单元(不包括该单元)。注意,该REG与释放缓冲区的空间操作相关.

4).ERXWRPT(分为H/L两个)接收写指针:

--手册P17,P33, 定义接收硬件收到的数据写入的FIFO 中的具体位置。 在正常操作中,接收硬件(指网络接口方向)将数据顺序写入ERXWRPT所指单元。注意,该REG为”只读”,且与释放缓冲区的空间操作相关.

5).ETXST(分为H/L两个)发送缓区起始地址:

--手册P17,在整个以太网数据缓冲区中,定义待发送数据区的首地址

6).ETXND(分为H/L两个)发送缓区结束地址:

--手册P17,在整个以太网数据缓冲区中,定义待发送数据区的尾地址

7).ERXST(分为H/L两个)接收缓区起始地址:

--手册P17, 在整个以太网数据缓冲区中,定义接收硬件可以写入数据的缓冲区首地址.

8).ERXND(分为H/L两个)接收缓区结束地址:

--手册P17, 在整个以太网数据缓冲区中,定义接收硬件可以写入数据的缓冲区尾地址.

9).EPKTCNT(8bits)以太网数据包计数器:

--手册P43,P45,当硬件允许的时候,每次收满一个以太网数据包(>64bytes)时,EPKTCNT+1,最大值为255,此时不论缓冲是否还有空闲也不再接收数据.每次前移ERXRDPT(即释放接收缓冲区操作)后,EPKTCNT-1,最小值为0.

注意:在以上9个REG中,名称中带有”X”的规定的地址都是给以太网接收器使用的(即:从以太网一侧访问8K缓存),只有ERDPT和EWRPT是MCU通过SPI接口访问8K缓冲区用的.访问的关系如下图:

clip_image001

其中 ERXWRPT和 ERXRDPT可以指向同一地址,应为ENC28J60接收时会从ERXWRPT指向的地址一直写到ERXRDPT指向的地址前一个空间(即手册所谓的”不包括ERXRDPT指向的单元”).此时整个接收缓冲区全部可用.8K空间中,实际用来进行发送缓冲的空间由寄存器组ETXST和ETXND确定,实际用来进行接受缓冲的空间由寄存器组ERXST和ERXND确定.显然,8K空间中可以多余一些什么也不用的位置.

2.MII和PHY寄存器的操作:

PHY寄存器负责对PHY接口的配置,MCU不能直接从SPI接口访问这些REG,但是主控可以通过MAC组的一组特殊控制REG来访问PHY控制寄存器,MAC组中的这些特殊的控制REG即称为MII接口寄存器.

对MCU而言,不会有直接访问PHY的可能,所有的PHY操作都必须经过MII寄存器来完成.还需注意,PHY有部分为16bits,写入的时候必须先写低8bits,当写入高8bits的时候控制的设定将立即起效.

3.控制器结构和初始化过程

clip_image002

初始化的过程应该是:

初始化ETH组REG--->初始化MAC组REG--->通过MII初始化PHY组REG(需要查询硬件稳定)

Step1:ETH组控制寄存器初始化

1).EIE初始化

--手册P67,以太网中断允许控制

主控SPI写控制REG(WCR),发出2byte,REG地址0h1b,数据为:

0b010\11011+0bAAAAAAAA(A--8bits实际数据)

2). EIR查询

--手册P68,以太网中断状态获取

主控SPI读控制REG(RCR),发出2byte, REG地址0h1C,数据为:

0b010\11100+0bXXXXXXXX(X—为了保持SPCK发出的无效数)

读取的有效数据在SPI发送的第二个有效字节返回.

3).ESTAT查询

--手册P66,获得PHY就绪状态(以及以太网的各种错误状态)

主控SPI读控制REG(RCR),发出2byte, REG地址0h1D,数据为:

0b010\11101+0bXXXXXXXX(X—为了保持SPCK发出的无效数)

读取的有效数据在SPI发送的第二个有效字节返回.

4).ECON2初始化

--手册P16,IC节能控制,数据包指针寄存器控制

主控SPI写控制REG(WCR),发出2byte,REG地址0h1E,数据为:

0b010\11110+0bAAAAAAAA(A--8bits实际数据)

5).ECON1初始化

--手册P15,特别注意其中对BANK0~3的选择位,写不同的控制REG需要多次改变Bank0~3的选择.

--手册P16,IC节能控制,数据包指针寄存器控制

主控SPI写控制REG(WCR),发出2byte,REG地址0h1F,数据为:

0b010\11111+0bAAAAAAAA(A--8bits实际数据)

6).ERXFCON接收过滤器初始化

--手册P48,

首先需要写ECON1,选择访问Bank1,此后

主控SPI写控制REG(WCR),发出2byte,REG地址0h18,数据为:

0b010\11000+0bAAAAAAAA(A--8bits实际数据)

Step2:ETH组地址寄存器初始化

1).寄存器组ETXST和ETXND就位

--定义发送缓冲区范围

ETXSTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h04(L),0h05(H),数据为:

0b010\00100+0bAAAAAAAA(A--8bits实际数据,ETXSTL)

0b010\00101+0bAAAAAAAA(A--8bits实际数据,ETXSTH)

ETXNDL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h06(L),0h07(H),数据为:

0b010\00110+0bAAAAAAAA(A--8bits实际数据,ETXNDL)

0b010\00111+0bAAAAAAAA(A--8bits实际数据,ETXNDH)

2). 寄存器组ERXST和ERXND就位

--定义接收缓冲区范围

ERXSTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h08(L),0h09(H),数据为:

0b010\01000+0bAAAAAAAA(A--8bits实际数据,ERXSTL)

0b010\01001+0bAAAAAAAA(A--8bits实际数据,ERXSTH)

ERXNDL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h0a(L),0h0b(H),数据为:

0b010\01010+0bAAAAAAAA(A--8bits实际数据,ERXNDL)

0b010\01011+0bAAAAAAAA(A--8bits实际数据,ERXNDH)

3). ERXWRPT和 ERXRDPT就位

--注意其范围要随应用中定义的数据帧的大小变化,且每次处理完接收以后要操作ERXRDPT释放空间.

ERXWRPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h0C(L),0h0D(H),数据为:

0b010\01100+0bAAAAAAAA(A--8bits实际数据, ERXRDPTL)

0b010\01101+0bAAAAAAAA(A--8bits实际数据, ERXRDPTH)

注意:初始化时, ERXWRPTL/H一般取等于ERXSTL/H

ERXRDPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h0E(L),0h0F(H),数据为:

0b010\01110+0bAAAAAAAA(A--8bits实际数据, ERXRDPTL)

0b010\01111+0bAAAAAAAA(A--8bits实际数据, ERXRDPTH)

注意: ERXRDPT与ERXWRPT的差值应该大于1个以太网数据帧的长度,如果ERXRDPT=ERXWRPT则整个接收缓冲区可以连续使用.

4).根据MCU从以太网接收数据的需要,ERDPT就位

ERDPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h00(L),0h01(H),数据为:

0b010\00000+0bAAAAAAAA(A--8bits实际数据,ERDPTL)

0b010\00001+0bAAAAAAAA(A--8bits实际数据,ERDPTH)

5).根据MCU向以太网发送数据的需要,EWRPT就位

EWRPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h02(L),0h03(H),数据为:

0b010\00010+0bAAAAAAAA(A--8bits实际数据,EWRPTL)

0b010\00011+0bAAAAAAAA(A--8bits实际数据,EWRPTH)

Step3:MAC组寄存器初始化

(注意:MAC组寄存器映射在Bank2/3,访问前需要调整ECON1中的BSEL0/1)

如果初始化发生在上电复位之后,初始化前必须查询ESTAT.CLKRDY(手册P33)

MAC寄存器的初始化顺序不重要,一般按照(手册P34)说明的顺序:

1).MACON2.MARST位清0—MAC初始化退出.

主控SPI写控制REG(WCR),发出2byte,REG地址0h01(Bank2)数据为:

0b010\00001+0bAAAAAAAA(A--8bits实际数据)

2).MACON1初始化

--MARXEN位置1使能MAC接收.

--启动全双工方式,TXPAUS和RXPAUS位置1.

主控SPI写控制REG(WCR),发出2byte,REG地址0h00(Bank2)数据为:

0b010\00000+0bAAAAAAAA(A--8bits实际数据)

3).MACON3初始化

--将PADCFG.TXCRCEN.和FULDPX位置1,使能帧自动填充,使能自动CRC生成.(要注意其中FRMLNEN位的使用).

主控SPI写控制REG(WCR),发出2byte,REG地址0h02(Bank2)数据为:

0b010\00010+0bAAAAAAAA(A--8bits实际数据)

4).MACON4一般保持默认值

5).MAMXFL(16bitsREG,分为H/L两部分)就位

--确定网络帧的最大字节数(暂定义应用中的帧长度都为64bytes).

主控SPI写控制REG(WCR),发出4byte,REG地址(Bank2)0h0A(L),0h0B(H),数据为:

0b010\01010+0bAAAAAAAA(A--8bits实际数据, MAMXFLL)

0b010\01011+0bAAAAAAAA(A--8bits实际数据, MAMXFLH)

6).MABBIPG就位

--背对背包时间间隔就位,全双工时置入值固定为15h

主控SPI写控制REG(WCR),发出2byte,REG地址0h04(Bank2)数据为:

0b010\00100+0b00010101

7).MAIPGL就位

--非背对背包时间间隔就位, 全双工时置入值固定为12h(L)和0Ch(H)

主控SPI写控制REG(WCR),发出4byte,REG地址(Bank2) 0h06(L)0h07(H)

数据为:

0b010\00110+0b00010010(MAIPGLL)

0b010\00111+0b00001100(MAIPGLH)

注意:正常使用时,应该采用全双工方式,此时MACLCON1/2可保持默认值

8).MAC地址就位(映射在Bank3)

--将6字节的MAC地址写入寄存器组:MAADR0~MAADR5.

主控SPI写控制REG(WCR),发出6byte,REG地址(Bank3) 0h00~0h05数据为:

0b010\00000+0bAAAAAAAA(A--8bits实际数据,MAADR1)

0b010\00001+0bAAAAAAAA(A--8bits实际数据,MAADR0)

0b010\00010+0bAAAAAAAA(A--8bits实际数据,MAADR3)

0b010\00011+0bAAAAAAAA(A--8bits实际数据,MAADR2)

0b010\00100+0bAAAAAAAA(A--8bits实际数据,MAADR5)

0b010\00101+0bAAAAAAAA(A--8bits实际数据,MAADR4)

Step4:PHY组寄存器初始化

注意: 如果初始化发生在上电复位之后,初始化前必须查询ESTAT.CLKRDY(手册P33)

(注意:PHY组寄存器的MII接口REG映射在Bank2,访问前需要调整ECON1中的BSEL0/1)

与PHY相关的MII寄存器共有6个分别是:

MICON—手册P21,MII控制REG

MICMD—手册P21,MII命令REG

MIREGADR—手册P19,PHY访问地址REG

MIWRL/H—手册P19,PHY写数据REG高/低,注意,该REG组必须先写入L再写入H,写入H会触发MII控制事件.

MIRDL/H—手册P19,PHY读数据REG高/低.在读之前应将MICMD的MIIRD位置1,这样可以触发PHY事件且使MISTAT.BUSY=1,当MII获得了PHY值以后,MIIRD不会自动清0.所以在查询MISTAT.BUSY=0以后要手动清0.

MISTAT—手册P22,MII状态REG,反映PHY的状态,在读/写PHY之前应该先查询此REG当MISTAT.BUSY=0时才可以进行操作.

根据手册P38,一般只需要配置3个PHY模块并且要查询PHY的工作状态

1).PHCON1的手动操作

--虽然可以通过外接LED的方式确定半双工/全双工方式,但是手工设置PHCON1.PDPXMD位的值是更加安全的方法,同时也要手工修改MACON3中的FULDPX位.

--PHY地址00h,通过MII操作时,流程在手册P19

主控SPI写控制REG(WCR),发出2byte*3,给MIREGADR,MIWRL/H 3个REG

地址(Bank2)0h14(MIREGADR),0h16(MIWRL),0h17(MIWRH),数据为:

0b010\10100+0b00000000(字节1—MIREGADR的地址,字节2—写入PHCON1的地址00h)

0b010\10110+0bAAAAAAAA(字节1—MIREGADR的地址, 字节2—写入MIWRL的8bits实际数据—L字节应该是写入PHCON1的实际值)

0b010\10111+0b00000000(字节1—MIREGADR的地址, 字节2—写入MIWRH的8bits实际数据,在这里发出的数据无效,仅触发PHY事件).

写入后,MII自动触发PHY事件,MISTAT.BUSY自动置1.

2).PHLCON的设置

--根据外结LED电路的实际结构,有可能要修改这个REG.

--PHY地址00h,通过MII操作时,流程在手册P19

主控SPI写控制REG(WCR),发出2byte*3,给MIREGADR,MIWRL/H 3个REG

地址(Bank2)0h14(MIREGADR),0h16(MIWRL),0h17(MIWRH),数据为:

0b010\10100+0b00010100(字节1—MIREGADR的地址,字节2—写入PHLCON的地址14h)

0b010\10110+0bAAAAAAAA(字节1—MIREGADR的地址, 字节2—写入MIWRL的8bits实际数据—L字节应该是写入PHLCON的实际值)

0b010\10111+0b00000000(字节1—MIREGADR的地址, 字节2—写入MIWRH的8bits实际数据,在这里发出的数据无效,仅触发PHY事件).

写入后,MII自动触发PHY事件,MISTAT.BUSY自动置1.

3).PHCON2的设置

--一般全双工状态时可以保持其默认值,但是注意其中的TXDIS位可以关闭PHY的硬件发送.

主控SPI写控制REG(WCR),发出2byte*3,给MIREGADR,MIWRL/H 3个REG

地址(Bank2)0h14(MIREGADR),0h16(MIWRL),0h17(MIWRH),数据为:

0b010\10100+0b00000000(字节1—MIREGADR的地址,字节2—写入PHCON2的地址11h)

0b010\10110+0bAAAAAAAA(字节1—MIREGADR的地址, 字节2—写入MIWRL的8bits实际数据—L字节应该是写入PHCON2的实际值)

0b010\10111+0b00000000(字节1—MIREGADR的地址, 字节2—写入MIWRH的8bits实际数据,在这里发出的数据无效,仅触发PHY事件).

写入后,MII自动触发PHY事件,MISTAT.BUSY自动置1.

特别注意:PHY寄存器不能直接访问,需要通过MII寄存器的间接操作.

4).查询MISTAT状态

--主控SPI读控制REG(RCR),发出3byte, REG地址0h0A(Bank3),数据为:

0b010\01010+0bXXXXXXXX+0bXXXXXXXX(X—为了保持SPCK发出的无效数)

读取的有效数据在SPI发送的第三个有效字节返回.

★emouse 思·睿博客文章★ 原创文章转载请注明:http://emouse.cnblogs.com
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/QQ576494799/article/details/48371381

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线