[UnityShader]渲染队列、ZWrite和ZTest_一般会先渲染离相机远的,再渲染离相机近的-程序员宅基地

技术标签: Shader  

http://blog.csdn.net/lyh916/article/details/45317571


参考链接:

http://blog.csdn.net/zhuyingqingfen/article/details/18979547

http://blog.csdn.net/lysc_forever/article/details/13614449

http://m.blog.csdn.net/blog/yxriyin/39081843


(1)什么是深度?

 深度其实就是该像素点在3d世界中距离摄像机的距离。离摄像机越远,则深度值(Z值)越大。


(2)什么是深度缓存?

深度缓存中存储着准备要绘制在屏幕上的像素点的深度值。如果启用了深度缓冲区,在绘制每个像素之前,OpenGL会把该像素的深度值和深度缓存的深度值进行比较。如果新像素深度值<深度缓存深度值,则新像素值会取代原先的;反之,新像素值被遮挡,其颜色值和深度将被丢弃。(深度主要起的是比较的作用)


(3)什么是深度测试?

在深度测试中,默认情况是将要绘制的新像素的z值与深度缓冲区中对应位置的z值进行比较,如果比深度缓存中的值小,那么用新像素的颜色值更新深度缓存中对应像素的颜色值


(4)为什么需要深度?

在不使用深度测试的时候,如果我们先绘制一个距离较近的物体,再绘制距离较远的物体,则距离远的物体因为后绘制,会把距离近的物体覆盖掉,这样的效果并不是我们所希望的。而有了深度缓冲以后,绘制物体的顺序就不那么重要了,都能按照远近(Z值)正常显示,这很关键。



那么,在unity中,如果知道了渲染队列,ZWrite,ZTest,如何确定哪个物体先显示呢?

首先,unity先将渲染队列中较前的进行渲染,然后再执行ZWrite,ZTest

ZWrite可以取的值为:On/Off,默认值为On,代表是否要将像素的深度写入深度缓存中(同时还要看ZTest是否通过)。

ZTest可以取的值为:Greater/GEqual/Less/LEqual/Equal/NotEqual/Always/Never/Off,默认值为LEqual,代表通过比较深度来更改颜色缓存的值。例如当取默认值的情况下,如果将要绘制的新像素的z值小于等于深度缓存中的值,则将用新像素的颜色值更新深度缓存中对应像素的颜色值。需要注意的是,当ZTest取值为Off时,表示的是关闭深度测试,等价于取值为Always,而不是Never!Always指的是直接将当前像素颜色(不是深度)写进颜色缓冲区中;而Never指的是不要将当前像素颜色写进颜色缓冲区中,相当于消失。



///

那么,重点来了:

1.当ZWrite为On时,ZTest通过时,该像素的深度才能成功写入深度缓存,同时因为ZTest通过了,该像素的颜色值也会写入颜色缓存。

2.当ZWrite为On时,ZTest不通过时,该像素的深度不能成功写入深度缓存,同时因为ZTest不通过,该像素的颜色值不会写入颜色缓存。

3.当ZWrite为Off时,ZTest通过时,该像素的深度不能成功写入深度缓存,同时因为ZTest通过了,该像素的颜色值会写入颜色缓存。

4.当ZWrite为Off时,ZTest不通过时,该像素的深度不能成功写入深度缓存,同时因为ZTest不通过,该像素的颜色值不会写入颜色缓存。


可以看到,像素的深度能否成功写入深度缓存,条件是ZWrite为On,ZTest通过;

写入深度缓存的作用就是为ZTest的比较做准备。

///



因为ZWrite默认值为On,ZTest默认值为LEqual,所以这很好地解释了为什么在unity中,距离相机近的东西会阻挡住距离相机远的东西。如果我们先绘制一个距离较近的物体,再绘制距离较远的物体,则距离远的物体因为后绘制,会把距离近的物体覆盖掉,这时我们可以通过修改ZWrite和ZTest来改变物体的遮挡关系!


测试环境(蓝色方块距离相机较近,注意这个不是Game视图):




测试的Shader代码(两个方块的shader代码起始都是一样的,测试时修改的是测试区里的代码):

[csharp]  view plain   copy
  1. Shader "Custom/ZTest" {  
  2.     Properties {  
  3.         _MainTex ("Base (RGB)", 2D) = "white" {}  
  4.     }  
  5.     SubShader {  
  6.         Tags { "RenderType"="Opaque" }  
  7.         LOD 200  
  8. /测试区  
  9.         Tags{ "Queue" = "Geometry" }  
  10.         //ZWrite Off  
  11.         //ZTest Off  
  12. /测试区  
  13.         CGPROGRAM  
  14.         #pragma surface surf Lambert  
  15.   
  16.         sampler2D _MainTex;  
  17.   
  18.         struct Input {  
  19.             float2 uv_MainTex;  
  20.         };  
  21.   
  22.         void surf (Input IN, inout SurfaceOutput o) {  
  23.             half4 c = tex2D (_MainTex, IN.uv_MainTex);  
  24.             o.Albedo = c.rgb;  
  25.             o.Alpha = c.a;  
  26.         }  
  27.         ENDCG  
  28.     }   
  29.     FallBack "Diffuse"  
  30. }  


渲染顺序:先蓝色方块再白色方块(以下简称蓝,白)

注意ZWrite默认值为On,ZTest默认值为LEqual,没有渲染物体时,深度缓存中的深度可以理解为无限大

1.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         ZWrite Off  
  4.         //ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         //ZWrite Off  
  4.         //ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:蓝没有将像素写进深度缓存中,ZTest通过了,颜色缓存中存放了蓝的颜色值

白将像素写进深度缓存中,ZTest通过了,颜色缓存的值变为白的,所以显示白


2.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         //ZWrite Off  
  4.         //ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         //ZWrite Off  
  4.         //ZTest Off  
  5. /白色方块测试区  

结果:蓝在前面

分析:蓝将像素写进深度缓存中,ZTest通过了,颜色缓存中存放了蓝的颜色值

而白的像素深度大于蓝的,既没有成功将像素写进深度缓存,同时ZTest不通过,像素被舍弃,所以显示蓝


3.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         ZWrite Off  
  4.         ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         //ZWrite Off  
  4.         //ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:蓝没有将像素写进深度缓存中,ZTest通过了,颜色缓存中存放了蓝的颜色值

白将像素写进深度缓存中,ZTest通过了,颜色缓存中存放为白的颜色值


4.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         //ZWrite Off  
  4.         //ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         //ZWrite Off  
  4.         ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:蓝将像素写进了深度缓存中

白将像素写进了深度缓存中,ZTest通过了,白将颜色缓存中的蓝的像素颜色值替换了。


5.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         //ZWrite Off  
  4.         //ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         ZWrite Off  
  4.         ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:蓝将像素写进了深度缓存中

白没能将像素写进了深度缓存中(ZWrite为off),但ZTest通过了,此时颜色缓存的值变为白的,但是深度缓存的值是蓝的


6.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         //ZWrite Off  
  4.         ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         //ZWrite Off  
  4.         ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:蓝将像素写进了深度缓存中

白将像素写进了深度缓存中,ZTest通过了,此时颜色缓存的值变为白的


7.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         ZWrite Off  
  4.         //ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         ZWrite Off  
  4.         //ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:白、蓝都没有将像素写入深度缓存中,所以深度缓存中的深度值为无穷大,最后因为白中ZTest默认值的原因,所以显示白


8.

[csharp]  view plain   copy
  1. /蓝色方块测试区  
  2.         Tags{ "Queue" = "Geometry+200" }  
  3.         ZWrite Off  
  4.         ZTest Off  
  5. /蓝色方块测试区  
[csharp]  view plain   copy
  1. /白色方块测试区  
  2.         Tags{ "Queue" = "Geometry+300" }  
  3.         ZWrite Off  
  4.         ZTest Off  
  5. /白色方块测试区  

结果:白在前面

分析:与7类似


版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_14939027/article/details/72614508

智能推荐

分布式光纤传感器的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告_预计2026年中国分布式传感器市场规模有多大-程序员宅基地

文章浏览阅读3.2k次。本文研究全球与中国市场分布式光纤传感器的发展现状及未来发展趋势,分别从生产和消费的角度分析分布式光纤传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。主要生产商包括:FISO TechnologiesBrugg KabelSensor HighwayOmnisensAFL GlobalQinetiQ GroupLockheed MartinOSENSA Innovati_预计2026年中国分布式传感器市场规模有多大

07_08 常用组合逻辑电路结构——为IC设计的延时估计铺垫_基4布斯算法代码-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏12次。常用组合逻辑电路结构——为IC设计的延时估计铺垫学习目的:估计模块间的delay,确保写的代码的timing 综合能给到多少HZ,以满足需求!_基4布斯算法代码

OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版-程序员宅基地

文章浏览阅读3.3k次,点赞3次,收藏5次。OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版

关于美国计算机奥赛USACO,你想知道的都在这_usaco可以多次提交吗-程序员宅基地

文章浏览阅读2.2k次。USACO自1992年举办,到目前为止已经举办了27届,目的是为了帮助美国信息学国家队选拔IOI的队员,目前逐渐发展为全球热门的线上赛事,成为美国大学申请条件下,含金量相当高的官方竞赛。USACO的比赛成绩可以助力计算机专业留学,越来越多的学生进入了康奈尔,麻省理工,普林斯顿,哈佛和耶鲁等大学,这些同学的共同点是他们都参加了美国计算机科学竞赛(USACO),并且取得过非常好的成绩。适合参赛人群USACO适合国内在读学生有意向申请美国大学的或者想锻炼自己编程能力的同学,高三学生也可以参加12月的第_usaco可以多次提交吗

MySQL存储过程和自定义函数_mysql自定义函数和存储过程-程序员宅基地

文章浏览阅读394次。1.1 存储程序1.2 创建存储过程1.3 创建自定义函数1.3.1 示例1.4 自定义函数和存储过程的区别1.5 变量的使用1.6 定义条件和处理程序1.6.1 定义条件1.6.1.1 示例1.6.2 定义处理程序1.6.2.1 示例1.7 光标的使用1.7.1 声明光标1.7.2 打开光标1.7.3 使用光标1.7.4 关闭光标1.8 流程控制的使用1.8.1 IF语句1.8.2 CASE语句1.8.3 LOOP语句1.8.4 LEAVE语句1.8.5 ITERATE语句1.8.6 REPEAT语句。_mysql自定义函数和存储过程

半导体基础知识与PN结_本征半导体电流为0-程序员宅基地

文章浏览阅读188次。半导体二极管——集成电路最小组成单元。_本征半导体电流为0

随便推点

【Unity3d Shader】水面和岩浆效果_unity 岩浆shader-程序员宅基地

文章浏览阅读2.8k次,点赞3次,收藏18次。游戏水面特效实现方式太多。咱们这边介绍的是一最简单的UV动画(无顶点位移),整个mesh由4个顶点构成。实现了水面效果(左图),不动代码稍微修改下参数和贴图可以实现岩浆效果(右图)。有要思路是1,uv按时间去做正弦波移动2,在1的基础上加个凹凸图混合uv3,在1、2的基础上加个水流方向4,加上对雾效的支持,如没必要请自行删除雾效代码(把包含fog的几行代码删除)S..._unity 岩浆shader

广义线性模型——Logistic回归模型(1)_广义线性回归模型-程序员宅基地

文章浏览阅读5k次。广义线性模型是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y 服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测正态分布的响应变量的工作。但是,有时候我们要进行非正态因变量的分析,例如:(1)类别型.._广义线性回归模型

HTML+CSS大作业 环境网页设计与实现(垃圾分类) web前端开发技术 web课程设计 网页规划与设计_垃圾分类网页设计目标怎么写-程序员宅基地

文章浏览阅读69次。环境保护、 保护地球、 校园环保、垃圾分类、绿色家园、等网站的设计与制作。 总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,网页的风格主题也很全面:如爱好、风景、校园、美食、动漫、游戏、咖啡、音乐、家乡、电影、名人、商城以及个人主页等主题,学生、新手可参考下方页面的布局和设计和HTML源码(有用点赞△) 一套A+的网_垃圾分类网页设计目标怎么写

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁_.net dll 全局目录-程序员宅基地

文章浏览阅读614次,点赞7次,收藏11次。之前找到一个修改 exe 中 DLL地址 的方法, 不太好使,虽然能正确启动, 但无法改变 exe 的工作目录,这就影响了.Net 中很多获取 exe 执行目录来拼接的地址 ( 相对路径 ),比如 wwwroot 和 代码中相对目录还有一些复制到目录的普通文件 等等,它们的地址都会指向原来 exe 的目录, 而不是自定义的 “lib” 目录,根本原因就是没有修改 exe 的工作目录这次来搞一个启动程序,把 .net 的所有东西都放在一个文件夹,在文件夹同级的目录制作一个 exe._.net dll 全局目录

BRIEF特征点描述算法_breif description calculation 特征点-程序员宅基地

文章浏览阅读1.5k次。本文为转载,原博客地址:http://blog.csdn.net/hujingshuang/article/details/46910259简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度..._breif description calculation 特征点

房屋租赁管理系统的设计和实现,SpringBoot计算机毕业设计论文_基于spring boot的房屋租赁系统论文-程序员宅基地

文章浏览阅读4.1k次,点赞21次,收藏79次。本文是《基于SpringBoot的房屋租赁管理系统》的配套原创说明文档,可以给应届毕业生提供格式撰写参考,也可以给开发类似系统的朋友们提供功能业务设计思路。_基于spring boot的房屋租赁系统论文