[kubernetes] 资源管理 --- 资源预留实践_--eviction-hard=memory.available-程序员宅基地

技术标签: k8s  

一 概述

1.1 问题

系统资源可分为两类:可压缩资源(CPU)和不可压缩资源(memory、storage)。可压缩资源比如CPU超配后,在系统满负荷时会划分时间片分时运行进程,系统整体会变慢(一般不会导致太大的问题)。但不可压缩资源如Memory,当系统内存不足时,就有可能触发系统 OOM;这时候根据 oom score 来确定优先杀死哪个进程,而 oom_score_adj 又是影响 oom score 的重要参数,其值越低,表示 oom 的优先级越低。在计算节点中,进程的 oom_score_adj 如下:
 

所以,OOM 的优先级如下:

BestEffort Pod > Burstable Pod > 其它进程 > Guaranteed Pod > kubelet/docker 等 > sshd 等

在Kubernetes平台,默认情况下Pod能够使用节点全部可用资源。如果节点上的Pod负载较大,那么这些Pod可能会与节点上的系统守护进程和k8s组件争夺资源并导致节点资源短缺,甚至引发系统OOM,导致某些进程被Linux系统的OOM killer机制杀掉,假如被杀掉的进程是系统进程或K8S组件,会导致比较严重的问题。


1.2 解决方案

针对这种问题,主要有两种解决方案(两种也可以结合使用):

    启用kubelet的Node Allocatable特性,为系统守护进程和k8s组件预留资源。 官方文档:https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources
    设置pod的驱逐策略,在pod使用资源到一定程度时进行pod驱逐。官方文档:https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/#eviction-policy
 

二  Kubelet Node Allocatable

kubelet的启动配置中有一个Node Allocatable特性,来为系统守护进程和k8s组件预留计算资源,使得即使节点满负载运行时,也不至于出现pod去和系统守护进程以及k8s组件争抢资源,导致节点挂掉的情况。kubernetes官方建议根据各个节点的负载情况来具体配置相关参数。

  • Kubelet Node Allocatable用来为Kube组件和System进程预留资源,从而保证当节点出现满负荷时也能保证Kube和System进程有足够的资源。
  • 目前支持cpu, memory, ephemeral-storage三种资源预留。
  • Node Capacity是Node的所有硬件资源,kube-reserved是给kube组件预留的资源,system-reserved是给System进程预留的资源, eviction-threshold是kubelet eviction的阈值设定,allocatable才是真正scheduler调度Pod时的参考值(保证Node上所有Pods的request resource不超过Allocatable)。
  • Node Allocatable Resource = Node Capacity - Kube-reserved - system-reserved - eviction-threshold

输入图片说明

如何配置

  • --enforce-node-allocatable,默认为pods,要为kube组件和System进程预留资源,则需要设置为pods,kube-reserved,system-reserve
  • --cgroups-per-qos,Enabling QoS and Pod level cgroups,默认开启。开启后,kubelet会将管理所有workload Pods的cgroups。
  • --cgroup-driver,默认为cgroupfs,另一可选项为systemd。取决于容器运行时使用的cgroup driver,kubelet与其保持一致。比如你配置docker使用systemd cgroup driver,那么kubelet也需要配置--cgroup-driver=systemd。
  • --kube-reserved,用于配置为kube组件(kubelet,kube-proxy,dockerd等)预留的资源量,比如—kube-reserved=cpu=1000m,memory=8Gi,ephemeral-storage=16Gi。
  • --kube-reserved-cgroup,如果你设置了--kube-reserved,那么请一定要设置对应的cgroup,并且该cgroup目录要事先创建好,否则kubelet将不会自动创建导致kubelet启动失败。比如设置为kube-reserved-cgroup=/kubelet.service 。
  • --system-reserved,用于配置为System进程预留的资源量,比如—system-reserved=cpu=500m,memory=4Gi,ephemeral-storage=4Gi。
  • --system-reserved-cgroup,如果你设置了--system-reserved,那么请一定要设置对应的cgroup,并且该cgroup目录要事先创建好,否则kubelet将不会自动创建导致kubelet启动失败。比如设置为system-reserved-cgroup=/system.slice。
  • --eviction-hard,用来配置kubelet的hard eviction条件,只支持memory和ephemeral-storage两种不可压缩资源。当出现MemoryPressure时,Scheduler不会调度新的Best-Effort QoS Pods到此节点。当出现DiskPressure时,Scheduler不会调度任何新Pods到此节点。关于Kubelet Eviction的更多解读,请参考我的相关博文。
  • Kubelet Node Allocatable的代码很简单,主要在pkg/kubelet/cm/node_container_manager.go,感兴趣的同学自己去走读一遍。

 

3. 实践

根据是否对system和kube做cgroup上的硬限制进行划分,资源预留主要有两种方式:

  • 只对所有pod使用的资源总量做cgroup级别的限制,对system和kube不做cgroup级别限制
  • 对pod、system、kube均分别做cgroup级别限制

方式1—只限制pod资源总量

1  将以下内容添加到kubelet的启动参数中:

--enforce-node-allocatable=pods \
--cgroup-driver=cgroupfs \
--kube-reserved=cpu=1,memory=1Gi,ephemeral-storage=10Gi \
--system-reserved=cpu=1,memory=2Gi,ephemeral-storage=10Gi \
--eviction-hard=memory.available<500Mi,nodefs.available<10%

按以上设置

    节点上可供Pod所request的资源总和allocatable计算如下:
    allocatable = capacity - kube-reserved - system-reserved - eviction-hard

    节点上所有Pod实际使用的资源总和不会超过:
    capacity - kube-reserved - system-reserved

2. 重启kubelet

service kubelet restart


3. 验证
1.验证公式计算的allocatable与实际一致

通过kubectl describe node查看节点实际capacity及allocatable的值

Capacity:
 cpu:     8
 memory:  32930152Ki(约31.4G)
 pods:    110
Allocatable:
 cpu:     6
 memory:  29272424Ki(约27.9G)
 pods:    110

根据公式capacity - kube-reserved - system-reserved - eviction-hard,memory的allocatable的值为31.4G - 1G - 2G - 0.5G = 27.9G,与Allocatable的值一致。


2.验证公式计算的总使用量限制与实际值一致

查看kubepods控制组中对内存的限制值memory.limit_in_bytes(memory.limit_in_bytes值决定了Node上所有的Pod实际能使用的内存上限)

$ cat /sys/fs/cgroup/memory/kubepods/memory.limit_in_bytes
30499250176(约28.4G)

根据公式capacity - kube-reserved - system-reserved,Node上Pod能实际使用的资源上限值为:31.4G - 1G -2G = 28.4G,与实际一致。
 

方式2—同时限制pod、k8s系统组件、linux系统守护进程资源

配置过程

1.将以下内容添加到kubelet的启动参数中:

--enforce-node-allocatable=pods,kube-reserved,system-reserved \
--cgroup-driver=cgroupfs \
--kube-reserved=cpu=1,memory=1Gi,ephemeral-storage=10Gi \
--kube-reserved-cgroup=/system.slice/kubelet.service \
--system-reserved cpu=1,memory=2Gi,ephemeral-storage=10Gi \
--system-reserved-cgroup=/system.slice \
--eviction-hard=memory.available<500Mi,nodefs.available<10%

至于如何设置cgroup结构,请参考官方建议。

2.为system.slice创建cpuset子系统:

mkdir -p /sys/fs/cgroup/cpuset/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/pids/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/devices/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/memory/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/hugetlb/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/cpu,cpuacct/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/blkio/system.slice/kubelet.service
mkdir -p /sys/fs/cgroup/systemd/system.slice/kubelet.service

备注:这一步手工创建,否则启动kubelet会报找不到相应cgroup的错误。

1. 可以看到未创建前system.slice这个cgroup是没有cpuset子系统的:

find /sys/fs/cgroup -name system.slice

    /sys/fs/cgroup/devices/system.slice
    /sys/fs/cgroup/memory/system.slice
    /sys/fs/cgroup/blkio/system.slice
    /sys/fs/cgroup/cpu,cpuacct/system.slice
    /sys/fs/cgroup/systemd/system.slice

 

2. 可以看到未创建前kubelet是没有cpuset子系统的:

find /sys/fs/cgroup -name kubelet.service
  

    /sys/fs/cgroup/devices/system.slice/kubelet.service
    /sys/fs/cgroup/memory/system.slice/kubelet.service
    /sys/fs/cgroup/blkio/system.slice/kubelet.service
    /sys/fs/cgroup/cpu,cpuacct/system.slice/kubelet.service
    /sys/fs/cgroup/systemd/system.slice/kubelet.service

3.重启kubelet

验证过程

这种情况下pod可分配的资源和实际可使用资源理论上与方法一的计算方式和结果是一样的,实际实验中也是一样的,在这里不做赘述。重点验证此情况下是否对k8s系统组件和linux系统守护进程做了cgroup硬限制。

查看system.slice控制组中对内存的限制值memory.limit_in_bytes:

$ cat /sys/fs/cgroup/memory/system.slice/memory.limit_in_bytes
2147483648(2G)

查看kubelet.service控制组中对内存的限制值memory.limit_in_bytes:

$ cat /sys/fs/cgroup/memory/system.slice/kubelet.service/memory.limit_in_bytes
1073741824(1G)

可以看到,方法2这种预留方式,对k8s组件和系统进程也做了cgroup硬限制,当k8s组件和系统组件资源使用量超过这个限制时,会出现这些进程被杀掉的情况。

 

例子

以如下的kubelet资源预留为例,Node Capacity为memory=32Gi, cpu=16, ephemeral-storage=100Gi,我们对kubelet进行如下配置:

--enforce-node-allocatable=pods,kube-reserved,system-reserved
--kube-reserved-cgroup=/system.slice/kubelet.service
--system-reserved-cgroup=/system.slice
--kube-reserved=cpu=1,memory=2Gi,ephemeral-storage=1Gi
--system-reserved=cpu=1,memory=1Gi,ephemeral-storage=1Gi
--eviction-hard=memory.available<500Mi,nodefs.available<10%

NodeAllocatable = NodeCapacity - Kube-reserved - system-reserved - eviction-threshold =

cpu=14, memory=28Gi ephemeral-storage=98Gi.

Scheduler会确保Node上所有的Pod Resource Request不超过NodeAllocatable。Pods所使用的memory和storage之和超过NodeAllocatable后就会触发kubelet Evict Pods。

 

参考:

https://my.oschina.net/jxcdwangtao/blog/1629059

https://blog.csdn.net/liukuan73/article/details/81054961

https://blog.csdn.net/liukuan73/article/details/82024085

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zwqjoy/article/details/91041203

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线