动态矩阵控制(DMC)的简单理解及其示例_dmc控制-程序员宅基地

技术标签: matlab  

前言

在模型预测控制的课程当中接触到了动态矩阵控制(DMC)算法,虽然不会在以后继续深入,但它控制、预测和校正的思想还是可圈可点的。本文将简要概述DMC的基本原理和控制流程,尽量做到省去复杂的数学公式而理解DMC。但由于接触不深且实力有限,本文的表述可能会有一些不准确或者错误,因此仅供参考,同时欢迎大家指正。

DMC的基本思想

动态矩阵控制(DMC)是在上世纪80年代提出的一种典型的模型预测控制(MPC)方法。虽然在今天它已经不再是MPC的研究关注点,但其思想却非常值得借鉴,因此几乎所有的模型预测控制教材都把DMC作为一部分来讲解。概括来说,DMC的特点主要有:

  1. 控制与系统的数学模型无关,仅需获取系统的阶跃响应序列,方法适用于稳定的系统;
  2. 系统的动态特性中具有纯滞后或非最小相位特性都不影响算法的直接应用。

也就是说,使用DMC无需知道被控对象的数学模型,只需要获取被控对象的阶跃响应序列即可实现控制效果,但需要被控对象是渐进稳定的。同时,即使被控对象有一定的纯滞后特性,或者是非最小相位的(对象传递函数的零点存在于S域右半平面)都不影响DMC的使用。从上面的特性可以,DMC的应用范围是比较广泛的。接下来就简单地谈一谈DMC的三要素,既预测模型、滚动优化和反馈校正。

预测模型

DMC的使用需要建立在预测模型的基础上。简单来说就是,DMC控制器希望通过已有信息构造未来若干时刻的系统输入并预测系统的输出。那么要如何实现呢?可行的方案之一是使用系统的阶跃响应序列。由线性时不变(LTI)系统具备的比例叠加性质可知,在已知从0开始的系统N个采样点上的阶跃响应序列的情况下,系统在k时刻对未来P个时刻的输出预测 Y ( k ) Y(k) Y(k)可由系统在k时刻的输出预测初值 Y 0 ( k ) Y_0(k) Y0(k)与M个连续的输入增量序列 Δ U ( k ) \Delta U(k) ΔU(k)及由阶跃响应序列组成的动态矩阵A计算得到,其计算表达式如下:
Y ( k ) = Y 0 ( k ) + A Δ U ( k ) Y(k)=Y_0(k)+A\Delta U(k) Y(k)=Y0(k)+AΔU(k)
其中N称为截断步长,P称为预测步长,M称为控制步长,它们三者之间的大小关系一般为N > P > M > 0。动态矩阵A由阶跃响应序列 [a(0), a(1), a(2) … a(N-1)] 构造得到,其具体构成如下:
A矩阵构成
DMC控制的期望效果是:在M个连续的控制输入序列作用下,系统的输出在P个时刻以内稳定在参考输出值。

滚动优化

在理想状态下,DMC控制器的确可能如期望的那样工作:仅需一次确定控制输入序列,然后静待系统的输出稳定在参考输出值,期间什么也不用做。然而在实际的系统中,由于系统扰动的存在使得这样理想的控制毫无可能。因此实际的做法是,在每个时刻k,控制器都会确定从该时刻起的M个控制增量序列用于预测控制,滚动优化也因此而得名。那么DMC又是如何确定每个时刻的控制增量的呢?答案便是采用最优控制的求解方法得到。模型预测控制与最优控制可以说是紧密相连的。在每次滚动优化时,都可以看作是根据当前已知信息确定未来控制增量的最优求解问题。而最优控制的基本思想在于:确定目标函数,并根据约束条件进行求解。在DMC的简单应用中一般是在无约束的条件下求解,而DMC控制增量求解的目标函数通常定义为如下:
m i n J = [ r p ( k ) − ( y p 0 ( k ) + A Δ u M ( k ) ) ] T Q [ r p ( k ) − ( y p 0 ( k ) + A Δ u M ( k ) ) ] + Δ u M T ( k ) R Δ u M ( k ) minJ=[r_p(k)-(y_{p0}(k)+A\Delta u_M(k))]^{T}Q[r_p(k)-(y_{p0}(k)+A\Delta u_M(k))]+\Delta u^{T}_M(k)R\Delta u_M(k) minJ=[rp(k)(yp0(k)+AΔuM(k))]TQ[rp(k)(yp0(k)+AΔuM(k))]+ΔuMT(k)RΔuM(k)
目标函数可以解释为:一方面我们希望系统在控制增量的作用下尽可能趋近于参考输出,一方面又希望控制增量在控制达到稳定后可以趋近于0,避免对执行机构造成不利的影响。可以看出,定义的目标函数是典型的二次型形式,可通过简单的二次规划或者变分法求解得到k时刻下的最优控制增量 Δ u M ∗ ( k ) \Delta u^{*}_M(k) ΔuM(k)如下:
Δ u M ∗ ( k ) = ( A T Q A + R ) − 1 A T Q [ r p ( k ) − y p 0 ( k ) ] \Delta u^{*}_M(k)=(A^{T}QA+R)^{-1}A^{T}Q[r_p(k)-y_{p0}(k)] ΔuM(k)=(ATQA+R)1ATQ[rp(k)yp0(k)]
其中 y p 0 ( k ) y_{p0}(k) yp0(k)为模型预测初值的前P个元素构成的序列。上式求解得到的 Δ u M ∗ ( k ) \Delta u^{*}_M(k) ΔuM(k)为一个向量,然而实际上DMC仅使用其中第一个元素用于预测控制,这也是滚动优化的特点。

反馈校正

在预测模型和滚动优化的基础上,DMC控制器已经可以实现开环控制的效果。理想情况下,既排除模型失配,环境干扰等因素,开环控制器可以较好地完成控制工作。但那也是在理想环境下,在真实环境中系统工作时一定会伴随着不确定的系统扰动,这时候应该做的便是将开环控制转为闭环控制以提升系统的抗扰动能力,而DMC也是这样做的。DMC在运行时会采集实时信息对预测模型进行校正,之后再进行新的优化,这个过程便是反馈校正。由于它是在线修改预测模型,因此也可以看作是一种在线辨识的方法。
反馈校正的思路在于:在k时刻时,将计算得到的最优控制增量 Δ u ( k ) \Delta u(k) Δu(k)作用于模型,可得到未来N个时刻的模型输出预测记为 y N 1 ( k ) y_{N1}(k) yN1(k),取预测输出值的第一个元素,既下一时刻的预测输出值 y 1 ( k + 1 ∣ k ) y_1(k+1|k) y1(k+1k)与下一时刻被控对象的实际输出值 y ( k + 1 ) y(k+1) y(k+1)进行比较,得到预测的误差 e ( k + 1 ) e(k+1) e(k+1)如下:
e ( k + 1 ) = y ( k + 1 ) − y 1 ( k + 1 ∣ k ) e(k+1)=y(k+1)-y_1(k+1|k) e(k+1)=y(k+1)y1(k+1k)
接着对误差 e ( k + 1 ) e(k+1) e(k+1)加权得到加权误差序列用于修正预测模型,其计算表达式如下:
y c o r ( k + 1 ) = y N 1 ( k ) + h e ( k + 1 ) y_{cor}(k+1)=y_{N1}(k)+he(k+1) ycor(k+1)=yN1(k)+he(k+1)
其中 y c o r ( k + 1 ) y_{cor}(k+1) ycor(k+1)为下一时刻修正后的模型输出预测值;h为N维误差加权序列。此时还需对 y c o r ( k + 1 ) y_{cor}(k+1) ycor(k+1)进行一步转移操作最终得到 y N 0 ( k + 1 ) y_{N0}(k+1) yN0(k+1)作为下一时刻的模型预测初值,其计算表达式如下:
y N 0 ( k + 1 ) = S y c o r ( k + 1 ) y_{N0}(k+1)=Sy_{cor}(k+1) yN0(k+1)=Sycor(k+1)
其中S矩阵的构成如下:
S矩阵

DMC的控制流程

在介绍完DMC的基本思想后,即可简单地介绍DMC的控制流程。整个控制过程简单来说就是:在k时刻,首先将k-1时刻的控制输入 u ( k − 1 ) u(k-1) u(k1)作用于被控对象并测量k时刻被控对象的输出值 y ( k ) y(k) y(k),接着取k时刻的模型预测序列 y N 1 ( k − 1 ) y_{N1}(k-1) yN1(k1)的第一个元素既 y 1 ( k ∣ k − 1 ) y_1(k|k-1) y1(kk1) y ( k ) y(k) y(k)进行比较得到预测误差 e ( k ) e(k) e(k) e ( k ) e(k) e(k)经过h向量加权与 y N 1 ( k − 1 ) y_{N1}(k-1) yN1(k1)相加后进行一步转移得到k时刻的模型预测初值 y N 0 ( k ) y_{N0}(k) yN0(k),取它的前P个元素构成 y P 0 ( k − 1 ) y_{P0}(k-1) yP0(k1)与参考轨迹 w P ( k ) w_P(k) wP(k)进行比较,利用前面滚动优化中提到的最优解方程求出k时刻的控制输入增量 Δ u ( k ) \Delta u(k) Δu(k),最后累加得到 u ( k ) = u ( k − 1 ) + Δ u ( k ) u(k)=u(k-1)+\Delta u(k) u(k)=u(k1)+Δu(k),同时将 Δ u ( k ) \Delta u(k) Δu(k)作用于预测模型,得到k时刻的模型预测值 y N 1 ( k ) y_{N1}(k) yN1(k)。DMC的控制流程图如下:

Created with Raphaël 2.3.0 开始 测量实际输出并计算误差 模型预测校正 移位设置此时刻的预测初值 计算控制增量 计算输出预测值 结束

模型预测控制教材上的DMC的系统控制框图如下所示:
DMC控制框图

DMC简单示例

在理解DMC的基本思想和大概的控制流程后,最后附上一个简单的例子帮助理解。本例中被控对象的传递函数为:
G ( s ) = s + 5 s 2 + 5 s + 3 G(s)=\frac{s+5}{s^2+5s+3} G(s)=s2+5s+3s+5
系统输出的参考轨迹设定为阶跃函数,既取定值1的序列。DMC控制的参数取N=20,P=10,M=1,采样周期Ts=1。具体的程序如下:

clc,close,clear;

% 被控对象传递函数
num=[1 5];
den=[1 5 3];
g=tf(num,den);

steps=100; % 仿真步数
ts=1; % 采样周期
p=10; % 预测步长
m=1; % 控制步长
n=20; % 截断步长

% 离散状态空间方程
[as,bs,cs,ds]=tf2ss(num,den);
[ad,bd]=c2d(as,bs,ts);
xs0=[0 0]';

% 传递函数阶跃响应
[a0,t]=step(g,0:ts:(n-1)*ts);

% 构造动态矩阵
a=zeros(p,m);
a(:,1)=a0(1:p);
for i=1:p
    for j=2:m
        if i>=j
            a(i,j)=a(i-1,j-1);
        end
    end
end

% 离线计算最优解系数d
q=eye(p);
r=0*eye(m);
c=zeros(m,1);
c(1)=1;
d=(a'*q*a+r)^-1*a'*q;
d=c'*d;

% 构造误差加权向量及转移矩阵
h=0.5*ones(n,1);
h(1)=1;
s=zeros(n,n);
for i=1:n-1
    s(i,i+1)=1;
end
s(n,n)=1;

yr=ones(p,1); % 参考轨迹
y0=zeros(n,1); % 模型预测
y=zeros(steps,1); % 实际输出
u=zeros(steps,1); % 系统控制量

% 首步计算
xs1=ad*xs0;
y(1)=cs*xs1;
xs0=xs1;
ycor=y0+h*(y(1)-y0(1));
y0=s*ycor;
du=d*(yr-y0(1:p));
y0=y0+a0*du;
u(1)=du;

% 滚动优化
for k=2:steps
    xs1=ad*xs0+bd*u(k-1);
    y(k)=cs*xs1+ds*u(k-1);
    xs0=xs1;
    ycor=y0+h*(y(k)-y0(1));
    y0=s*ycor;
    du=d*(yr-y0(1:p));
    y0=y0+a0*du;
    u(k)=u(k-1)+du;
end

% 绘制图形
figure(1);
subplot(211);
plot(y,'linewidth',2);
title('系统输出');
xlabel('t');
ylabel('y');
ylim([0 1.2])
grid on;
subplot(212);
plot(u,'linewidth',2);
title('控制输入');
xlabel('t');
ylabel('u');
grid on;

DMC仿真结果绘制的曲线如下:
DMC仿真结果

结束语

花了一点时间简单把课程涉及到的动态矩阵控制算法进行了介绍,以起到加深对方法理解的作用。但由于水平有限,表述不怎么准确,因此本文仅供参考(毕竟也没想花太多时间在这上面)。实际上DMC已经不是模型预测控制领域的关注点。作为一种典型的方法,它的思想值得借鉴,但确实不具备太大的实用性,在一些应用场景中甚至不及PID的控制性能。它的亮点在于引入预测控制后控制的鲁棒性有所提升,但同时也伴随着计算量过大的缺陷。总地来说,DMC的思想是值得借鉴的,但也仅此而已。如果需要更好地学习模型预测控制,那理解DMC只是第一步或者根本不需要这一步。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/hlld__/article/details/106677811

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线