数据分析-程序员宅基地

技术标签: 数据分析  信息可视化  数据挖掘  

数据分析流程

数据分析开发流程一般分为下面5个阶段,主要包含:数据采集、数据处理、数据建模、数据分析、数据可视化

数据采集: 数据通常来自于企业内部或外部,企业内部数据可以直接从系统获得,外部数据则需要购买,或者通过爬虫等数据采集工具采集;
数据处理: 获取到的数据往往会包含一些干扰数据、不完整数据,因此一般需要对数据做相应的处理;
数据建模: 不同的业务对数据的需求不同,根据相关业务或战略需求建立相应的数据模型,有针对性进行主题分析;
数据分析: 根据模型中要分析或计算的指标,采用相应的分析方法进行数据分析,得出目标分析结果;
数据可视化: 将数据分析结果进行可视化展示,使其更加方便业务人员或决策者理解

1、数据采集

数据的来源主要分为两大类,企业 外部来源 和 内部来源

外部来源 :外包购买、网路爬取、免费开源数据等;
内部来源:销售数据、社交通信数据、考勤数据、财务数据、服务器日志数据等;

2、数据处理

数据清洗

数据清洗(data cleaning) :是通过填补缺失值、光滑噪声数据,平滑或删除离群点,纠正数据的不一致来达到清洗的目的。

数据清洗是一项繁重的任务,需要根据数据的准确性、完整性、一致性、时效性、可信性和解释性来考察数据,从而得到标准的、干净的、连续的数据。

缺失值处理

删除变量: 若变量的缺失率较高(大于80%)覆盖率较低,且重要性较低可以直接将变量删除;
统计量填充: 若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况用基本统计量填充(最大值、最小值、均值、中位数、众数)进行填充;
插值法填充: 包括随机插值、多重差补法、热平台插补、拉格朗日插值、牛顿插值等;
模型填充: 使用回归、贝叶斯、随机森林、决策树等模型对缺失数据进行预测;
哑变量填充: 若变量是离散型,且不同值较少,可转换成哑变量(通常取值0或1);
总结来看,常用的做法是:先用Python中的pandas.isnull.sum() 检测出变量的缺失比例,考虑删除或者填充,若需要填充的变量是连续型,一般采用均值法和随机差值进行填充,若变量是离散型,通常采用中位数或哑变量进行填充。

噪声处理

噪声(noise) 是被测量变量的随机误差或方差,是观测点和真实点之间的误差。
分箱法: 对数据进行分箱操作,等频或等宽分箱,然后用每个箱的平均数,中位数或者边界值(不同数据分布,处理方法不同)代替箱中所有的数,起到平滑数据的作用;
回归法: 建立该变量和预测变量的回归模型,根据回归系数和预测变量,反解出自变量的近似值

离群点处理

异常值(离群点)是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。异常分为两种:“伪异常”,由于特定的业务运营动作产生,是正常反应业务的状态,而不是数据本身的异常;“真异常”,不是由于特定的业务运营动作产生,而是数据本身分布异常,即离群点。主要有以下检测离群点的方法:
简单统计分析:根据箱线图、各分位点判断是否存在异常,例如Python中pandas的describe函数可以快速发现异常值。
基于绝对离差中位数(MAD):这是一种稳健对抗离群数据的距离值方法,采用计算各观测值与平均值的距离总和的方法。放大了离群值的影响。
基于距离: 通过定义对象之间的临近性度量,根据距离判断异常对象是否远离其他对象,缺点是计算复杂度较高,不适用于大数据集和存在不同密度区域的数据集
基于密度: 离群点的局部密度显著低于大部分近邻点,适用于非均匀的数据集
基于聚类: 利用聚类算法,丢弃远离其他簇的小簇。

数据集成

多个数据源集成时会遇到的问题:实体识别问题、冗余问题、数据值的冲突和处理。
1. 实体识别问题
匹配来自多个不同信息源的现实世界实体,数据分析者或计算机如何将两个不同数据库中的不同字段名指向同一实体,通常会通过数据库或数据仓库中的元数据(关于数据的数据)来解决这个问题,避免模式集成时产生的错误。
2. 冗余问题
如果一个属性能由另一个或另一组属性“导出”,则此属性可能是冗余的。属性或维度命名的不一致也可能导致数据集中的冗余。 常用的冗余相关分析方法有皮尔逊积距系数、卡方检验、数值属性的协方差等。
3. 数据值的冲突和处理
不同数据源,在统一合并时,保持规范化,去重

数据规约

数据变换

数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。

1. 规范化处理
数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,如[-1,1]区间,或[0,1]区间,便于进行综合分析。
2. 离散化处理
数据离散化是指将连续的数据进行分段,使其变为一段段离散化的区间。分段的原则有基于等距离、等频率或优化的方法。
3. 稀疏化处理
针对离散型且标称变量,无法进行有序的LabelEncoder时,通常考虑将变量做0,1哑变量的稀疏化处理,稀疏化处理既有利于模型快速收敛,又能提升模型的抗噪能力。

3、数据建模

常用数据分析模型,主要包括:对比分析、漏斗分析、留存分析、A/B测试、用户行为路径分析、用户分群、用户画像分析等。

用户画像

用户画像分析是基于自动标签系统将用户完整的画像描绘清晰。
常用的画像标签类别有:基本属性、心理特征、兴趣爱好、购买能力、行为特征、社交网络等。
在这里插入图片描述

4、数据分析

常用数据分析方法:描述统计、假设检验、信度分析、相关分析、方差分析、回归分析、聚类分析、判别分析、主成分分析、因子分析、时间序列分析等。

回归分析


回归分析研究的是因变量和自变量之间的定量关系,运用十分广泛,可以用于房价预测、销售额度预测、贷款额度预测等。常见的回归分析有线性回归、非线性回归、有序回归、岭回归、加权回归等。


线性回归(Linear regression) :是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
一元线性回归分析: 只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
多元线性回归分析:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。
Logistic回归分析:Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。Logistic回归分为条件Logistic回归和非条件Logistic回归,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。

回归分析与相关分析的联系:

相关分析是回归分析的基础和前提。假若对所研究的客观现象不进行相关分析,直接作回归分析,则这样建立的回归方程往往没有实际意义。只有通过相关分析,确定客观现象之间确实存在数量上的依存关系,而且其关系值又不确定的条件下,再进行回归分析,在此基础上建立回归方程才有实际意义。
回归分析是相关分析的深入和继续。对所研究现象只作相关分析,仅说明现象之间具有密切的相关关系是不够的,统计上研究现象之间具有相关关系的目的,就是要通过回归分析,将具有依存关系的变量间的不确定的数量关系加以确定,然后由已知自变量值推算未知因变量的值,只有这样,相关分析才具有实际意义。
回归分析侧重于研究随机变量间的依赖关系,以便用一个变量去预测另一个变量;相关分析侧重于发现随机变量间的种种相关特性。

5、数据可视化

 常见数据可视化图表

常见数据可视化图表有:柱状图、折线图、饼图、散点图、雷达图、箱型图、气泡图、词频图、桑基图、热力图、关系图、漏斗图等。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m0_74206393/article/details/137836993

智能推荐

BAT批处理创建文件桌面快捷方式_批处理创建桌面快捷方式-程序员宅基地

文章浏览阅读1.5w次,点赞9次,收藏26次。简介一个创建某个文件到桌面快捷方式的BAT批处理.代码@echooff::设置程序或文件的完整路径(必选)setProgram=D:\Program Files (x86)\格式工厂.4.2.0\FormatFactory.exe::设置快捷方式名称(必选)setLnkName=格式工厂v4.2.0::设置程序的工作路径,一般为程序主目录,此项若留空,脚本将..._批处理创建桌面快捷方式

射频识别技术漫谈(6-10)_芯片 ttf模式-程序员宅基地

文章浏览阅读2k次。射频识别技术漫谈(6-10),概述RFID的通讯协议;射频ID卡的原理与实现,数据的传输与解码;介绍动物标签属性与数据传输;RFID识别号的变化等_芯片 ttf模式

Python 项目实战 —— 手把手教你使用 Django 框架实现支付宝付款_django 对接支付宝接口流程-程序员宅基地

文章浏览阅读1.1k次。今天小编心血来潮,为大家带来一个很有趣的项目,那就是使用 Python web 框架 Django 来实现支付宝支付,废话不多说,一起来看看如何实现吧。_django 对接支付宝接口流程

Zabbix 5.0 LTS在清理历史数据后最新数据不更新_zabbix问题没有更新-程序员宅基地

文章浏览阅读842次。Zabbix 5.0 LTS,跑了一年多了一直很稳定,前两天空间显示快满了,于是手贱清理了一下history_uint表(使用mysql truncate),结果折腾了一周。大概故障如下:然后zabbix论坛、各种群问了好久都没解决,最后自己一番折腾似乎搞定了。初步怀疑,应该是由于历史数据被清空后,zabbix需要去处理数据,但是数据量太大,跑不过来,所以来不及更新了(?)..._zabbix问题没有更新

python学习历程_基础知识(2day)-程序员宅基地

文章浏览阅读296次。一、数据结构之字典 key-value

mybatis-plus字段策略注解strategy_mybatisplus strategy-程序员宅基地

文章浏览阅读9.7k次,点赞3次,收藏13次。最近项目中遇到一个问题,是关于mybatis-plus的字段注解策略,记录一下。1问题调用了A组件(基础组件),来更新自身组件的数据,发现自己组件有个字段总是被清空。2原因分析调用的A组件的字段,属于基础字段,自己业务组件,对这个基础字段做了扩展,增加了业务字段。但是在自己的组件中的实体注解上,有一个注解使用错误。mybatis-plus封装的updateById方法,如果..._mybatisplus strategy

随便推点

信息检索笔记-索引构建_为某一文档及集构件词项索引时,可使用哪些索引构建方法-程序员宅基地

文章浏览阅读3.8k次。如何构建倒排索引,我们将这个过程叫做“索引构建”。如果我们的文档很多,这样索引就一次性装不下内存,该如何构建。硬件的限制 我们知道ram读写是随机的操作,只要输入相应的地址单元就能瞬间将数据读出来或者写进去。但是磁盘不行,磁盘必须有一个寻道的过程,外加一个旋转时间。那么只有涉及到磁盘,我们就可以考虑怎么节省I/O操作时间。【注】操作系统往往以数据块为单位进行读写。因为读一_为某一文档及集构件词项索引时,可使用哪些索引构建方法

IT巨头英特尔看好中国市场前景-程序员宅基地

文章浏览阅读836次。英特尔技术与制造事业部副总裁卞成刚7日在财富论坛间隙接受中新社记者采访时表示,该公司看好中国市场前景,扎根中国并以此走向世界是目前最重要的战略之一。卞成刚说,目前该公司正面临战略转型,即从传统PC服务领域扩展至所有智能设施领域,特别是移动终端。而中国目前正引领全球手机市场,预计未来手机、平板电脑等方面的发明创新将大量在中国市场涌现,并推向全球。持相同态度的还有英特尔中国区执行董事戈峻。戈峻

ceph中的radosgw相关总结_radosgw -c-程序员宅基地

文章浏览阅读627次。https://blog.csdn.net/zrs19800702/article/details/53101213http://blog.csdn.net/lzw06061139/article/details/51445311https://my.oschina.net/linuxhunter/blog/654080rgw 概述Ceph 通过radosgw提供RES..._radosgw -c

前端数据可视化ECharts使用指南——制作时间序列数据的可视化曲线_echarts 时间序列-程序员宅基地

文章浏览阅读3.7k次,点赞6次,收藏9次。我为什么选择ECharts ? 本周学校课程设计,原本随机佛系选了一个51单片机来做音乐播放器,结果在粗略玩了CN-DBpedia两天后才回过神,课设还没有开始整。于是懒癌发作,碍于身上还有比赛的作品没交,本菜鸡对硬件也没啥天赋,所以就直接把题目切换成软件方面的题目。写python的同学选择了一个时间序列数据的可视化曲线程序设计题目,果真python在数据可视化这一点性能很优秀。..._echarts 时间序列

ApplicationEventPublisherAware事件发布-程序员宅基地

文章浏览阅读1.6k次。事件类:/** * *   * @className: EarlyWarnPublishEvent *   * @description:数据风险预警发布事件 *   * @param: *   * @return: *   * @throws: *   * @author: lizz *   * @date: 2020/05/06 15:31 * */public cl..._applicationeventpublisheraware

自定义View实现仿朋友圈的图片查看器,缩放、双击、移动、回弹、下滑退出及动画等_imageview图片边界回弹-程序员宅基地

文章浏览阅读1.2k次。如需转载请注明出处!点击小图片转到图片查看的页面在Android开发中很常用到,抱着学习和分享的心态,在这里写下自己自定义的一个ImageView,可以实现类似微信朋友圈中查看图片的功能和效果。主要功能需求:1.缩放限制:自由缩放,有最大和最小的缩放限制 2居中显示:.若图片没充满整个ImageView,则缩放过程将图片居中 3.双击缩放:根据当前缩放的状态,双击放大两倍或缩小到原来 4.单指_imageview图片边界回弹